Tag Archives: conar

Conar 6: Parser — окончание

Начало

Предыдущая часть

Последнее, что осталось «дописать» — собственно организация процесса разбора, а именно: поиск ключей и выборка параметров. При поиске ключей проверяем четыре варианта: «ключ» «…» «другой ключ», «ключ=значение», «-ключключ…ключ» и «ключзначение» (именно в таком порядке). Третий вариант применяется только для однобуквенных ключей.

Все нижеприведённые функции являются членами класса Parser.

Функция, проверяющая параметр на удовлетворение первому варианту («ключ»):

bool is_direct_key(const std::string &param) const
{
  return mapper.count(param) != 0;
}

Функция, проверяющая параметр на удовлетворение второму варианту («ключ=значение»), возвращает позицию знака «=»:

size_t is_key_equals(const std::string &param) const
{
  const auto eq_pos = param.find('=');
  if (eq_pos == std::string::npos)
    return 0;

  return is_direct_key(param.substr(0, eq_pos))? eq_pos: 0;
}

Функция, проверяющая параметр на удовлетворение третьему варианту («-ключключ…ключ»):

bool is_key_sequence(const std::string &param) const
{
  const auto psz = param.size();
  if (psz < 3 || param[0] != '-')
    return false;

  char key[3] {'-'};
  for (size_t i = 1; i < psz; ++i)
  {
    key[1] = param[i];
    if (mapper.count(key) == 0)
      return false;
  }

  return true;
}

Наконец, функция, проверяющая параметр на удовлетворение четвёртому варианту («ключзначение»), возвращает позицию первого символа значения:

size_t is_key_value(std::string param) const
{
  while (!param.empty())
  {
    param.pop_back();
    if (is_direct_key(param))
      return param.size();
  }

  return 0;
}

Данная функция проверяет «с конца», пытаясь подобрать самый длинный ключ, что может быть нежелаемым поведением (например, мы хотим использовать в такой манере только однобуквенные ключи — такую опцию я хочу добавить позже).

Используя определённые выше функции можно набросать скелет цикла обработки последовательности параметров:

  Unparsed_parameters unparsed;
  Parameters params(from, to);
  for (auto key = begin(params), params_end = end(params),
            prev_key = params_end;
    key != params_end;)
  {
    // Check all possible variants one by one.
    if (is_direct_key(*key))
    {
      // The only situation in which we may have a sequence
      // of argument parameters after the key.

      prev_key = key;
    }
    else if (const auto eq_pos = is_key_equals(*key))
    {    }
    else if (is_key_sequence(*key))
    {    }
    else if (const auto val_pos = is_key_value(*key))
    {    }
    else
    {
      // Nope, this is not a valid parameter of any form.
      unparsed.emplace_back(move(*key));
      ++key; // next...
    }
  }
  return unparsed;

Если сработало условие is_direct_key(*key), то надо найти следующий ключ, а всё что между передать диапазоном обработчику опции, соответствующей *key. Первая мысль: запоминать последнюю такую позицию (итератор prev_key) и вызывать обработчик, когда был найден правый конец. Недостаток: это надо делать под каждым if’ом, хотелось бы избежать такого дублирования кода…

Подумав, как можно разобраться с данной ситуацией, я остановился на варианте «умного» кода (здесь «умный» — не комплимент), а именно, использовать приём, известный как «хэширование»:

    size_t pos;
    if
    (
      int situation =
        is_direct_key(*key)?          1
      : (pos = is_key_equals(*key))?  2
      : is_key_sequence(*key)?        3
      : (pos = is_key_value(*key))?   4
      : 0 // --> else
    )
    {   }
    else
    {
      // Nope, this is not a valid parameter of any form.
      unparsed.emplace_back(move(*key));
      ++key; // next...
    }

Теперь я могу избежать дублирования кода, а необходимая информация о случае хранится в situation и pos. Хотя нет, есть ещё случай, когда ключ — последний, дальше до конца идут только его аргументы… Продублировать вызов обработчика после цикла? Думаю, лучше ситуацию «конец параметров» тоже занести в situation:

  for (auto key = begin(params), params_end = end(params),
            prev_key = params_end;;)
  {
    size_t pos;
    if
    (
      int situation =
        key == params_end?            1
      : is_direct_key(*key)?          2
      : (pos = is_key_equals(*key))?  3
      : is_key_sequence(*key)?        4
      : (pos = is_key_value(*key))?   5
      : 0 // --> else
    )

Интересно, как можно было бы записать то же самое чище и без дублирования кода…

Определим для удобства записи функцию, «вытаскивающая» ссылку обработчик по ключу:

template <class Key>
Handler& handler_of(const Key &key)
{
  return std::get<0>(options[mapper.at(key)]);
}

Теперь я могу, наконец, записать, что делается под if’ом:

  if (prev_key != params_end)
  {
    for (auto last = handler_of(*prev_key)
                     (prev_key + 1, key);
         last != key; ++last)
    { unparsed.emplace_back(move(*last)); }
    prev_key = params_end;
  }

  switch (situation)
  {
  case 1:
    return unparsed;

  case 2:
    prev_key = key;
    break;

  case 3: case 5:
    {
      const int has_equals = situation == 3;
      auto k = key->substr(0, pos);
      key->erase(0, pos + has_equals);
      if (handler_of(k)(key, key + 1) == key)
        unparsed.emplace_back(move(*key));
    }
    break;

  case 4:
    for (size_t i = 1, sz = key->size(); i < sz; ++i)
    {
      char k[3] { '-', (*key)[i] };
      handler_of(k)(params_end, params_end);
    }
  }

Красотой этот код не отличается, увы. И надо написать для него тесты.

В результате тестирования была исправлена ветка else:

    else
    {
      // Nope, this is not a valid parameter of any form.
      if (prev_key == params_end)
        unparsed.emplace_back(move(*key));
    }

При тестировании со строковыми параметрами обнаружилась старая ошибка: оператор >> читает «словами», однако в случае строковых параметров их надо не «читать» (с пробельными символами-разделителями, да), а просто «отдавать» целиком. Для этого я заменю явное чтение с помощью >> на вызов новой функции impl::read_value:

/// Tries to read a generic val from string str.
template <class S, class T>
inline bool read_value
  (std::istringstream &reader, S &&str, T &val)
{
  reader.str(std::forward<S>(str));
  return reader >> val;
}

/// Forwards a string instead of reading it.
inline bool read_value
  (std::istringstream&, std::string &&str, std::string &val)
{
  val = std::move(str);
  return true;
}

Забавно, что после этой замены сработал тест value_out (код ошибки 7) — из-за того, что теперь «чтение» забирает строки с помощью move, а не копирует их.

Вместе с тестами таки вылезло за пределы 1000 строк. В итоге, я не решился использовать C++17 (только static_assert без сообщения, а можно было декомпозиционное определение и string_view, например).

Код данного варианта целиком.

Conar 5: структура данных Parser

Начало

Предыдущая часть

Займёмся классом Parser.

При добавлении опции требуется строить отображение ключ -> (обработчик, инфо). Чтобы не дублировать пары (обработчик, инфо) (что важно для «обработчика», который может хранить изменяемое состояние), можно или оборачивать их в shared_ptr и отображать ключ в shared_ptr, или складывать в отдельный контейнер и отображать ключ в индекс или итератор. Второй вариант мне нравится больше.

Обработчик будем приводить к типу Handler, объявленному следующим образом:

using Parameters = std::vector<std::string>;
using PIt = Parameters::iterator;
using Handler = std::function<PIt(PIt, PIt)>;

Теперь определим собственно структуры данных, содержащиеся в объекте Parser. Mapper отображает ключи в индексы вектора Options.

using Option = std::tuple<Handler, Option_info>;
using Options = std::vector<Option>;
using Mapper = std::map<std::string, std::size_t>;
Options options;
Mapper mapper;

Напишем код, добавляющий опцию (тройку «обработчик, ключи, инфо«).

/// Add an option description.
/// Use functions flag, value and seq to make an option.
template <class Opt>
Parser& operator()(Opt option)
{
  using namespace std;
  static_assert(tuple_size<Opt>::value == 3);

  // Add the option to options.
  const auto index = options.size();
  options.emplace_back(move(get<0>(option)),
                       move(get<2>(option)));

  // Register keys of the option.
  for (auto &key: get<1>(option))
    mapper.emplace(key_prep(move(key)), index);

  return *this;
}

Функция key_prep добавляет знаки «-» в начало строки:

static std::string key_prep(std::string &&key)
{
  if (!key.empty() && std::isalnum(key[0]))
  {
    if (key.size() == 1)
      key.insert(0, 1, '-');
    else
      key.insert(0, "--");
  }

  return move(key);
}

Теперь можно заполнить тело функции help, которую можно использовать и в целях тестирования. Подумав, я решил убрать параметр «ширина строки», поскольку это не очень нужное усложнение. Реальную ширину строки консоли нельзя получить стандартными методами, а насильная вставка перевода строки может приводить к появлению избыточных пустых строк. Функция получилась длинная, но простая:

/// Construct a help message.
std::string help(
  std::size_t key_column_width = 20,
  const char *line_sep = "\n\n") const
{
  using namespace std;
  ostringstream write;
  write.setf(ios::left);

  // Option index -> first key (iterator).
  vector<Mapper::const_iterator> key_by_index(options.size());
  for (auto p = mapper.end(), b = mapper.begin();;)
  {
    --p;
    key_by_index.at(p->second) = p;
    if (p == b)
      break;
  }

  // Make the text.
  for (auto p = mapper.begin(), e = mapper.end(); p != e; ++p)
  {
    if (p->first.size() < key_column_width)
    {
      write.width(key_column_width);
      write << p->first;
    }
    else
    {
      write.width(0);
      write << p->first << '\n';
    }

    const auto pivot = key_by_index[p->second];
    if (pivot == p)
      write << get<1>(options[p->second]);
    else
      write << ("See " + pivot->first + ".");
    write << line_sep;
  }

  return write.str();
}

Самую сложную часть парсера — собственно разбор списка параметров — из-за недостатка времени в данный момент я оставил для следующей части.

Код данного варианта целиком.

Продолжение следует…

Conar 4: больше SFINAE

Начало

Предыдущая часть

Займёмся функциями, обеспечивающими чтение последовательностей. Первой такой функцией у меня будет не seq, а вариант value, который записывает каждое распознанное значение по итератору вывода.

template <class T, class OutIt> inline
auto value(OutIt dest,
  Possible_keys keys, Option_info info = {},
  std::enable_if_t<
    std::is_base_of<
      std::output_iterator_tag,
    typename std::iterator_traits<OutIt>::iterator_category>
      ::value, int> = 0)
{
  using std::move;
  return value_parser<T>(
    [dest](T val) mutable { *dest++ = std::move(val); },
    move(keys), move(info));
}

Мелкая неприятность: пользователь должен явно указывать тип считываемых значений T. В принципе, можно сделать два варианта: аналогичный приведённому выше и выводящий тип значения с помощью iterator_traits::value_type. К сожалению, стандартные итераторы вывода, реализующие вставку в контейнеры, определяют value_type как void, делая тип элементов контейнера невыводимым для функции value. Кроме того, заметим, что forward_iterator_tag наследует от input_iterator_tag, но не от output_iterator_tag.

Введём простенькие вспомогательные определения.

/// Check if iterator It is compatible with category Cat.
template <class It, class Cat>
using Has_iterator_category =
  is_base_of<Cat,
    typename iterator_traits<It>::iterator_category>;

/// Check if iterator It is an output iterator.
template <class It>
using Is_output_iterator =
  Has_iterator_category<It,
    output_iterator_tag>;

/// Check if iterator It is a forward iterator.
template <class It>
using Is_forward_iterator =
  Has_iterator_category<It,
    forward_iterator_tag>;

/// Check if iterator It declares void as its value type.
template <class It>
using Has_void_value =
  is_same<void,
    typename iterator_traits<It>::value_type>;

Теперь два варианта value, пишущих через итераторы можно определить следующим образом:

/// Construct a value option, which writes values through an iterator.
/// Explicitly typed variant when the type is not derivable from OutIt.
template <class T, class OutIt> inline
auto value(OutIt dest,
  Possible_keys keys, Option_info info = {},
  std::enable_if_t<
    impl::Is_output_iterator<OutIt>::value &&
    impl::Has_void_value<OutIt>::value,
    int> = 0)
{
  using std::move;
  return value_parser<T>(
    [dest](T val) mutable { *dest++ = std::move(val); },
    move(keys), move(info));
}

/// Construct a value option, which writes values through an iterator.
template <class OutIt> inline
auto value(OutIt dest,
  Possible_keys keys, Option_info info = {},
  std::enable_if_t<
    (impl::Is_output_iterator<OutIt>::value ||
     impl::Is_forward_iterator<OutIt>::value) &&
    !impl::Has_void_value<OutIt>::value,
    int> = 0)
{
  using std::move;
  using T = typename std::iterator_traits<OutIt>::value_type;
  return value_parser<T>(
    [dest](T val) mutable { *dest++ = std::move(val); },
    move(keys), move(info));
}

Тестирование этих определений вскрыло небольшое упущение: value_parser также должна создавать mutable-замыкание, если мы хотим упаковать в него своё mutable-замыкание, что требуется, в свою очередь, из-за необходимости передвигать итератор на каждом вызове и сохранять его изменённую версию между вызовами. Соответственно, я также добавил mutable в flag_parser и seq_parser.

Теперь можно перейти к seq.

Вариант seq, заполняющий условно бесконечную последовательность по итератору, написать не составит большого труда. Полная аналогия с вариантами value, указанными выше. Как и в случае с value, предполагается, что «места хватит» (интересно, сколько параметров командной строки можно скормить в распространённых ОС/интерпретаторах?).

Приведу одну из них. Вторая абсолютно аналогична.

template <class T, class OutIt> inline
auto seq(OutIt dest,
  Possible_keys keys, Option_info info = {},
  std::enable_if_t<
    impl::Is_output_iterator<OutIt>::value &&
    impl::Has_void_value<OutIt>::value,
    int> = 0)
{
  using std::move;
  return seq_parser<T>(
    [dest](T *from, T *to) mutable
    {
      while (from != to)
        *dest++ = std::move(*from++);
    },
    move(keys), move(info));
}

Для удобства пользователя можно добавить ещё три варианта seq, которые принимают непосредственно контейнеры, извлекают тип элементов через вложенное объявление value_type и выбирают способ вставки (push_back, insert или push) в зависимости от того, какой подходит. Для различения между push_back и insert (линейными и ассоциативными контейнерами) нам в качестве заготовки пригодится SFINAE-костыль Is_incrementable. Последний вариант seq подразумевает вставку в адаптер вроде std::stack с помощью вызова push.

/// Check if container C supports push_back(T&&).
template <class C, class T>
struct Supports_push_back
{
  template <class Y>
  static true_type check(decltype((void)(
    declval<Y>().push_back(declval<T>())
  ), 1));

  template <class Y>
  static false_type check(unsigned);

  using type = decltype(check<C&>(1));
  static constexpr bool value = type::value;
};

Два других детектора (Supports_insert и Supports_push) полностью аналогичны (да, макрос сюда так и просится). Вспомогательные определения для краткости записи сигнатур функций seq:

template <class C>
using Use_push_back =
  Supports_push_back<C, typename C::value_type>;

template <class C>
using Use_insert = bool_constant<
  Supports_insert<C, typename C::value_type>::value &&
  !Use_push_back<C>::value>;

template <class C>
using Use_push = bool_constant<
  Supports_push<C, typename C::value_type>::value &&
  !Use_push_back<C>::value &&
  !Use_insert<C>::value>;

Теперь вариант seq, который заполняет контейнер, предоставляющий функцию push_back, может быть записан следующим образом:

/// Construct a seq option,
/// which appends a "push_back" container.
template <class Container> inline
auto seq(Container &cont,
  Possible_keys keys, Option_info info = {},
  std::enable_if_t<
    impl::Use_push_back<Container>::value,
    int> = 0)
{
  using std::move;
  using T = typename Container::value_type;
  return seq_parser<T>(
    [&cont](T *from, T *to) mutable
    {
      while (from != to)
        cont.push_back(std::move(*from++));
    },
    move(keys), move(info));
}

Ещё два варианта seq полностью аналогичны.

Код данного варианта целиком.

Продолжение следует.

Conar 3: перегрузка функций и SFINAE

Часть 1

Часть 2

Написанный к данному моменту код всё ещё ничего не делает. Попробуем сделать функции-«упаковщики», создающие опции на основе заданных обработчиков и значений Possible_keys и Option_info. Роль DTO будет выполнять std::tuple<Обработчик, Possible_keys, Option_info>. Всего предполагается три семейства функций, отвечающих трём видам опций (ранее трём классам): flag, value и seq.

Предполагается, что данные функции будут перегружены. Для «выключения» ненужных шаблонов, вызывающих проблемы с неединственностью возможного варианта вызова перегруженной функции, C++11 и новее предлагает std::enable_if. Однако здесь нам неудобно ставить enable_if «впереди» (в возвращаемом типе), т.к. функции возвращают кортеж, включающий член анонимного типа. Впрочем, enable_if всегда можно поставить последним параметром.

Базовые функции имеют следующий вид:

/// Create a flag option with a custom handler.
template <class FlagHandler> inline
auto flag(FlagHandler handler,
  Possible_keys keys, Option_info info = {},
  std::enable_if_t<
    impl::Is_flag_handler<FlagHandler>::value, int> = 0)
{
  using std::move;
  return std::make_tuple(
    [f = move(handler)](auto from, auto to)
    {
      f();
      return from;
    },
    move(keys), move(info));
}

/// Create a value option with a custom handler.
template <class T, class ValueHandler> inline
auto value(ValueHandler handler,
  Possible_keys keys, Option_info info = {},
  std::enable_if_t<
impl::Is_value_handler_for<ValueHandler, T>::value, int> = 0)
{
  using std::move;
  return std::make_tuple(
    [f = move(handler)](auto from, auto to)
    {
      if (from == to)
        return from;

      std::istringstream reader(*from);
      T val {};
      if (reader >> val)
      {
        f(std::move(val));
        ++from;
      }

      return from;
    },
    move(keys), move(info));
}

/// Create a value sequence option with a custom handler.
template <class T, class SeqHandler> inline
auto seq(SeqHandler handler,
  Possible_keys keys, Option_info info = {},
  std::enable_if_t<
    impl::Is_seq_handler_for<SeqHandler, T>::value, int> = 0)
{
  using std::move;
  return std::make_tuple(
    [f = move(handler)](auto from, auto to)
    {
      std::vector<T> values;
      for (std::istringstream reader; from != to; ++from)
      {
        reader.str(*from);
        T val {};
        if (!(reader >> val))
          break;

        values.emplace_back(std::move(val));
        reader.clear();
      }

      f(values.data(), values.data() + values.size());
      return from;
    },
    move(keys), move(info));
}

Теперь определим их перегруженные варианты для конкретных простых случаев.

Простейший случай — установка булевской переменной в соответствии с присутствием заданного флага в опциях.

/// Construct a flag option, which sets a Boolean variable.
inline auto flag(bool &flag_var,
  Possible_keys keys, Option_info info = {})
{
  using std::move;
  return flag(
    [&flag_var]() { flag_var = true; },
    move(keys), move(info));
}

Более хитрый случай — подсчёт количества повторения заданного флага среди набора аргументов командной строки. Для этого будем передавать объект, для которого определён инкремент. Чтобы определить, доступна ли операция инкремента, воспользуемся стандартным костылём: SFINAE (принцип действия std::enable_if тоже основан на SFINAE). Вид этого костыля вызывает стойкое желание оформить соответствующий макрос…

template <class C>
struct Is_incrementable
{
  template <class Y>
  static true_type check(decltype(
    (void)(++declval<add_lvalue_reference_t<Y>>()), 1));

  template <class Y>
  static false_type check(unsigned);

  using type = decltype(check<C>(1));
  static constexpr bool value = type::value;
};

Собственно, код-«детектор» это ++declval<add_lvalue_reference_t<Y>>(), всё остальное — «boilerplate code». std::declval<Y> по умолчанию возвращает rvalue-ссылку, для которой ++ не определён, поэтому здесь следует предварительно сформировать «обычную» (lvalue) ссылку.

/// Construct a flag option, which increments a variable.
template <class C> inline
auto flag(C &counter,
  Possible_keys keys, Option_info info = {},
  std::enable_if_t<
    impl::Is_incrementable<C>::value &&
    !impl::Is_flag_handler<C>::value, int> = 0)
{
  return flag(
    [&counter]() { ++counter; },
    move(keys), move(info));
}

С Concepts этих корявеньких enable_if бы не было, да и прочие SFINAE-обороты можно было бы привести к менее костыльному виду. Но Concepts всё никак не принимают в стандарт…

Теперь займёмся value.
Запись прочитанного значения в заданную переменную могла бы иметь примерно такой вид:

/// Construct a value option, which sets a variable.
template <class T> inline
auto value(T &var,
  Possible_keys keys, Option_info info = {})
{
  return value<T>(/* что-то */);
}

Но данная сигнатура недостаточно хорошо «отличима» от сигнатуры базовой версии функции value… Я вижу три варианта решения проблемы: а) заставить пользователя указывать тип считываемого значения явно и проверять приводимость к T; б) ввести специальную функцию var, порождающую объект-обёртку переменной; в) проверять «читабельность» значений T из потока ввода (написать SFINAE-детектор аналогичный Is_incrementable и воспользоваться enable_if).

Вариант (б) менее интуитивен и вообще не очень мне нравится. Вариант (в) технически менее изящен, но более удобен для пользователя — не надо указывать тип явно.

Наконец, можно просто дать особые имена базовым функциям flag, value и seq, удалив их из набора перегруженных «удобных» функций прямого использования. Именно так я и поступлю. Теперь базовые версии flag, value и seq носят имена flag_parser, value_parser и seq_parser.

/// Construct a value option, which sets a variable.
template <class T> inline
auto value(T &var,
  Possible_keys keys, Option_info info = {})
{
  using std::move;
  return value_parser<T>(
    [&var](T val) { var = std::move(val); },
    move(keys), move(info));
}

В принципе, сейчас уже можно написать простенькие тесты на введённые выше «удобные» функции. Тесты добавлены в namespace test заголовочного файла conar.hpp. Тесты возвращают 0 в случае успеха. Объём кода тихонечко перевалил за 300 строчек. Интересно, в 1000 строк полная версия влезет?

Код данного варианта целиком.

Продолжение следует.

Conar 2: классы за борт!

Начало

Вторая «серия» планировалась через два дня после первой. Получилось — через две недели. Лень-матушка вперёд нас родилась…

Синтаксис вызова парсера

Предложенный ранее синтаксис для Parser несколько избыточен по части скобок :)

Новый синтаксис:

auto parser = parse(опция_1, опция_2, ...);
auto unparsed = parser(argc, argv);
cout << parser.help(...) << endl;

С помощью шаблона с переменным числом параметров данный синтаксис легко добавить к тому, что уже есть:

namespace impl
{
  /// A stub for parse with more parameters.
  inline void parse(Parser&) {}

  /// Add all options to the parser in one recursive call.
  template <class Opt1, class... Other> inline
  void parse(Parser &parser, Opt1 &&option_1,
               Other&&... other_options)
  {
    parser(forward<Opt1>(option_1));
    parse(parser, forward<Other>(other_options)...);
  }
}

/// Make a parser with all options in one call.
template <class... Options>
Parser parse(Options&&... options)
{
  Parser parser;
  impl::parse(parser, forward<Options>(options)...);
  return parser;
}

Представление опций

Объединение общего описания possible_keys и info (фактически, это DTO) с типозависимым поведением (handler) не есть хорошо. Можно было бы сделать из Option чисто абстрактный класс («интерфейс»), наследники которого определяли бы вызов обработчика (handler) и, вероятно, распознавание текста (собственно параметров) — пара виртуальных функций.

Но зачем парсеру знать эти подробности? Фактически, с точки зрения парсера всё поведение «опции» сконцентрировано в одном действии — распознавании текста. Какие там в процессе значения получаются, и как они затем обрабатываются, парсеру всё равно. Поэтому соблазнительно определить это одним замыканием (функциональным объектом), который «скармливается» парсеру. Надо только придумать интерфейс вызова…

Представим, что парсер распознал ключ. То, что после ключа может быть параметром (параметрами) соответствующей ключу опции. Как их передать и как понять, что было успешно принято (распознано)?

Вариант ключа 1, ключ t, time

-t5, --time=5 — только одно значение может быть параметром — то, что идёт сразу за ключом или после знака =. Это часть («хвост») аргумента командной строки. Все прочие аргументы к делу не относятся.

Вариант ключа 2, ключ times

--times 10 start 20 finish — произвольное число параметров — аргументы командной строки за аргументом, содержащим ключ, и до конца или следующего аргумента, содержащего ключ.

Вариант ключа 1 можно рассматривать как частный случай варианта ключа 2. Для разбора в какой-то форме можно передавать массив строк. А возвращать, например, количество успешно распознанных строк. Но как сообщать другие ошибки: неверный формат, недостаточное количество параметров? В конце концов, этот вопрос можно отдать на откуп обработчику, а не решать его на уровне парсера.

Итого, получаем STL-подобный интерфейс:

template <class FwdIt>
FwdIt option_parse(FwdIt from, FwdIt to);
// iterator_traits<FwdIt>::value_type = string

Статическая проверка на соответствие сигнатуры вызова предполагаемого обработчика распознанных значений ключа может выполняться с помощью следующих определений (упакованы в namespace impl):

template <class FlagHandler>
using Is_flag_handler = std::is_convertible<
	FlagHandler, std::function<void()>>;

template <class ValueHandler, class T>
using Is_value_handler_for = std::is_convertible<
	ValueHandler, std::function<void(T)>>;

template <class SeqHandler, class T>
using Is_seq_handler_for = std::is_convertible<
	SeqHandler, std::function<void(T*, T*)>>;

Код данного варианта целиком.

Продолжение следует.