Daily Archives: 07.07.2017

Эксперименты с hypot II

Небольшое дополнение к предыдущему посту. Ввиду низкого быстродействия frexp/ldexp может быть разумно заменить их на выбор множителя (степени двойки) банальными if-else.

inline float hypot_v2b(float x, float y)
{
  x = std::fabs(x);
  y = std::fabs(y);

  float
    min_ = x < y? x: y,
    max_ = x < y? y: x,
    mul, invmul;

  if (max_ <= 0x1p-126f)
  {
    invmul = 0x1p-126f;
    mul = 0x1p+126f;
  }
  else if (max_ <= 0x1p-63f)
  {
    invmul = 0x1p-63f;
    mul = 0x1p+63f;
  }
  else if (max_ <= 1.f)
  {
    invmul = 1.f;
    mul = 1.f;
  }
  else if (max_ <= 0x1p+63f)
  {
    invmul = 0x1p+63f;
    mul = 0x1p-63f;
  }
  else
  {
    invmul = 0x1p+126f;
    mul = 0x1p-126f;
  }

  max_ *= mul;
  min_ *= mul;

  return invmul * std::sqrt(max_* max_ + min_* min_);
}

Данный код предотвращает некорректное переполнение и исчезновение и обеспечивает погрешность 1 ULP. Конечно, гребёнка if-ов сказывается на скорости работы — у меня получилось, что hypot_v2b примерно втрое медленнее hypot_v1 (но всё же в десять раз быстрее hypot_v2a). Эта оценка довольно условна, так как скорость исполнения ветвлений зависит от множества факторов.

Аналогичный способ можно применить для замены frexp/ldexp при вычислении произведений. Например, если произведение получилось меньше по абсолютной величине наименьшего положительного нормального числа, то пересчитать его, предварительно домножив на 0x1p+63f; если произведение стало бесконечным (переполнение) или приблизилось по величине к наибольшему представимому числу, то пересчитать его, домножив на 0x1p-63f.

Реклама