Пример функциональной декомпозиции

Задача вроде тех, что решают студенты на нашем экзамене после первого семестра.

«Дана прямоугольная матрица. Найти в ней первую строку, не содержащую нулей, или определить, что таких строк нет.»

При всей простоте этой задачи она предполагает широкий спектр возможных решений. К сожалению, не смотря на то, что на практике и в самостоятельных работах подобные задачи есть, у многих студентов они всё равно вызывают затруднения на экзамене.

Решение в стиле C подразумевает прототип функции вроде (матрицу можно оформить по-разному, но предпочтём пока простейший вариант):

float* find_row_without_zero
  (float **a, size_t rows, size_t cols);

— вернуть указатель на соответствующую строку, либо nullptr, если такой нет.

Итак, студент видит слово «матрица», из чего делает вывод, что здесь явно двойной цикл, и пишет что-то такое:

float* find_row_without_zero
  (float **a, size_t rows, size_t cols)
{
  for (size_t i = 0; i < rows; ++i)
  {
    for (size_t j = 0; j < cols; ++j)
    {
      if (a[i][j] == 0)
        // ???
      else
        // ???

Почему-то многим очень хочется поставить else-секцию с возвратом результата. Т.е. ошибочно подменить квантор «все» (не нули) на «существует». Под if в этом случае идёт break. Положим, стало ясно, что else здесь никак не нужен. Что же делать? Типичное неказистое решение имеет следующий вид:

// Bad structured programming (using a flag variable).
float* find_row_without_zero_1
  (float **a, size_t rows, size_t cols)
{
  for (size_t i = 0; i < rows; ++i)
  {
    bool found = true;
    for (size_t j = 0; j < cols; ++j)
    {
      if (a[i][j] == 0)
      {
        found = false;
        break;
      }
    }

    if (found)
      return a[i];
  }

  return nullptr;
}

В принципе, кто-то может решиться на использование goto, что даёт избавление от лишней переменной. Но это маловероятно: в примерах goto почти не встречается, а в книгах последних десятилетий его использование традиционно порицается.

// I'm not afraid of GOTO!
float* find_row_without_zero_2
  (float **a, size_t rows, size_t cols)
{
  for (size_t i = 0; i < rows; ++i)
  {
    for (size_t j = 0; j < cols; ++j)
      if (a[i][j] == 0)
        goto next_row;

    return a[i];
  next_row:;
  }

  return nullptr;
}

На самом деле, данная задача подразумевает применение функциональной декомпозиции (основного метода программирования, кстати). Достаточно понять, что решение по сути является композицией двух линейных поисков.

// Good structured programming:
// applying functional decomposition.
float* find_value
  (float *a, size_t size, float val)
{
  for (size_t i = 0; i < size; ++i)
    if (a[i] == val)
      return a + i;
  return nullptr;
}

float* find_row_without_zero_3
  (float **a, size_t rows, size_t cols)
{
  for (size_t i = 0; i < rows; ++i)
    if (!find_value(a[i], cols, 0))
      return a[i];
  return nullptr;
}

Если предполагается использование STL (после первого семестра это ещё не предполагается), то явный цикл можно заменить на вызов std::find, так:

// Ah, std::find does the work in C++.
float* find_row_without_zero_4
  (float **a, size_t rows, size_t cols)
{
  for (size_t i = 0; i < rows; ++i)
    if (std::find(a[i], a[i] + cols, 0.f) == a[i] + cols)
      return a[i];
  return nullptr;
}

или даже так (ещё std::find_if, шаблон по типу данных и значение по умолчанию вместо явного нуля):

// It's not beautiful, I guess...
template <class NT>
NT* find_row_without_zero_5
  (NT **a, size_t rows, size_t cols)
{
  const auto p = std::find_if(a, a + rows,
    [cols](NT *a)
    {
      return std::find(a, a + cols, NT{}) == a + cols;
    });
  return p == a + rows? nullptr: *p;
}

Последний вариант, впрочем, наверно, избыточно «навороченный».

Ну и наконец, можно поразвлекаться в функциональном стиле (требуется C++14), отказавшись от указателей и рассматривая матрицу как диапазон диапазонов. Будем возвращать итератор в стиле STL.

using std::forward;

template <class Item>
auto equals(Item &&item)
{
  return [it = forward<Item>(item)]
  (auto &&other)
  {
    return other == it;
  };
}

template <class Pred>
auto find(Pred &&pred)
{
  return [pr = forward<Pred>(pred)]
  (auto &&rng)
  {
    using std::begin;
    using std::end;

    const auto e = end(rng);
    auto p = begin(rng);
    while (p != e && !pr(*p))
      ++p;

    return p;
  };
}

template <class Pred>
auto none(Pred &&pred)
{
  return [pr = forward<Pred>(pred)]
  (auto &&rng)
  {
    using std::end;
    return find(pr)(rng) == end(rng);
  };
}

Вышеприведённые определения позволяют в итоге записать решение в виде композиции:

template <class Rng2>
auto find_row_without_zero_6(Rng2 &&rows)
{
  return find(none(equals(0)))(rows);
}

Забавно, что такая конструкция применима не только, например, к вектору векторов, но и к статическому двумерному массиву:

float m[3][4]
{
  { 1, 1, 1, 0 },
  { 0, 1, 1, 1 },
  { 1, 0, 1, 1 },
};

assert(find_row_without_zero_6(m) == std::end(m));
Реклама

Добавить комментарий

Заполните поля или щелкните по значку, чтобы оставить свой комментарий:

Логотип WordPress.com

Для комментария используется ваша учётная запись WordPress.com. Выход / Изменить )

Фотография Twitter

Для комментария используется ваша учётная запись Twitter. Выход / Изменить )

Фотография Facebook

Для комментария используется ваша учётная запись Facebook. Выход / Изменить )

Google+ photo

Для комментария используется ваша учётная запись Google+. Выход / Изменить )

Connecting to %s

%d такие блоггеры, как: